(1)掌握椭圆的定义、标准方程和椭圆的简单几何性质。
(2)掌握双曲线的定义、标准方程和双曲线的简单几何性质。
(3)掌握抛物线的定义、标准方程和抛物线的简单几何性质。
(4)了解圆锥曲线的初步应用。
5.直线、平面、简单几何体
考试内容:
平面及其基本性质。平面图形直观图的画法。空间两直线、两平面、直线与平面的位置关系。多面体。正多面体。棱柱。棱锥。球。
考试要求:
(1)理解平面的基本性质,会用斜二测画法画水平放置的平面图形的直观图。了解空间两直线、两平面、直线与平面的几种位置关系,能够画出空间两条直线、直线和平面的各种位置关系的图形。能够根据图形想象它们的位置关系。
(2)了解多面体、凸多面体的概念,了解正多面体的概念。
(3)了解棱柱的概念,掌握棱柱的性质,会画直棱柱的直观图。掌握柱体的体积公式、正棱柱表面积的计算。
(4)了解棱锥的概念,掌握正棱锥的性质,会画正棱锥的直观图。掌握锥体的体积公式、正棱锥表面积的计算。
(5)了解球的概念,掌握球的性质,掌握球的表面积公式、体积公式。
6.数学归纳法
考试内容:
数学归纳法。数学归纳法的应用。
考试要求:
理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。
7.概率与统计
考试内容:
随机事件的概率。等可能性事件的概率。互斥事件有一个发生的概率。相互独立事件同时发生的概率。独立重复试验。离散型随机变量的分布列。离散型随机变量的期望值和方差。抽样方法。总体分布的估计。正态分布。
考试要求:
(1)了解随机事件的发生存在着规律性和随机事件概率的意义。
(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。
(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率。
(4)会计算事件在n次独立重复试验中恰好发生k次的概率。
(5)了解离散型随机变量的意义,会求出某些简单的离散型随机变量的分布列。
(6)了解离散型随机变量的期望值、方差的意义,会根据离散型随机变量的分布列求出期望值、方差。
(7)会用随机抽样、系统抽样、分层抽样等常用的抽样方法从总体中抽取样本。
(8)会用样本频率分布去估计总体分布。
8.集合
考试内容:
集合。区间。邻域。
考试要求:
(1)理解集合的含义,掌握元素与集合的属于、不属于关系。掌握集合的表示方法。
(2)理解集合之间包含与相等的含义,了解全集与空集的含义。
(3)理解两个集合的并集、交集、补集的含义。
(4)理解区间、邻域的定义。掌握区间、邻域的表示方法。
9.函数
考试内容:
映射。函数概念及其表示。函数的有界性、单调性、奇偶性、周期性。反函数与复合函数。基本初等函数及其图像。有理指数幂的运算性质。对数的运算性质。同角的三角函数的基本关系式。三角函数的诱导公式。两角和与差、二倍角的正弦、余弦、正切公式。初等函数。
考试要求:
(1)了解映射的概念。掌握函数的定义、函数的二要素。掌握定义域的确定和计算。会求反函数。
(2)理解函数有界性、单调性、奇偶性、周期性的概念,掌握判断一些简单函数的有界性、单调性、奇偶性、周期性的方法。
(3)了解复合函数的概念,会将复合函数分解成简单函数,反之,把简单函数组合成复合函数。
(4)理解分数指数幂的概念,掌握有理指数幂的运算性质。理解对数的概念,掌握对数的运算性质。
(5)理解三角函数的概念,掌握同角三角函数的基本关系式,正弦、余弦的诱导公式,两角和与差、二倍角的正弦、余弦、正切公式。掌握正弦定理、余弦定理,并能初步运用它们解斜三角形。
(6)掌握基本初等函数的定义(三角函数重点掌握正弦、余弦、正切、余切。反三角函数重点掌握arcsina、arccosoa、arctana、arccota)、性质和图像。了解初等函数的概念。
(7)能够运用基本初等函数的性质解决某些简单的实际问题。
10.极限
考试内容:
数列的极限。函数的极限。极限的四则运算和两个重要极限。连续函数。
考试要求:
(1)理解数列极限、函数极限的定义。
(2)掌握极限的四则运算和两个重要极限,会求数列的极限和函数的极限。
(3)掌握函数连续的定义。掌握函数有定义、有极限、连续之间的关系。能正确判断函数的连续区间或间断点的位置,尤其是分段函数在分段点上的连续性。
(4)了解闭区间上连续函数的性质及其应用。
(5)掌握无穷大量与无穷小量的定义及无穷小量阶的比较。
11.导数
考试内容:
导数的概念。函数的和、差、积、商的求导法则。复合函数的求导法则。二阶导数。隐函数的导数。函数的微分。导数的简单应用。
考试要求:
(1)掌握导数的定义、几何意义。
(2)掌握基本求导公式,并能熟练运用导数的四则运算法则、复合函数求导法则、隐函数求导法则求初等函数的导数。
(3)了解二阶导数的定义及求法。
(4)了解微分的定义,基本初等函数的微分公式与微分的运算法则。
(5)理解可导、可微与连续之间的关系。
(6)了解可导函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号);会求一些实际问题(一般指单峰函数)的最大值和最小值。
12.积分
考试内容:
不定积分的概念、性质。定积分的概念、性质。牛顿一莱布尼茨公式。二重积分的概念与性质。
考试要求:
(1)了解不定积分的定义、性质。掌握基本积分表。会用不定积分的性质和基本积分公式求简单函数的不定积分。
(2)理解定积分的定义、性质、几何意义。掌握牛顿一莱布尼茨公式。会用定积分的性质和牛顿一莱布尼茨公式求简单函数的定积分。
(3)了解二重积分的定义、几何意义。
(4)理解用定积分、二重积分求曲边梯形的面积、曲顶柱体的体积的思想方法。